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Fractional Fourier transform of
apertured paraboloid refracting system
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The limitation of paraxial condition of paraboloid refracting system in performing fractional Fourier trans-
form acts like an aperture, which makes the system different from ideal systems. With aperture expanded
as the sum of finite complex Gaussian terms, a more practical approximate analytical solution of frac-
tional Fourier transform of Gaussian beam in an apertured paraboloid refracting system is obtained and
also numerical investigation is presented. Complicated and practical fractional Fourier transform systems
can be constructed by cascading several apertured paraboloid refracting systems which are the simplest
and the most basic units for performing more precise transform.
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Physically, optical fractional Fourier transform is per-
formed in laterally finite system, however, mathemat-
ically, fractional Fourier transform is defined in later-
ally infinite system[1−7]. This results in the difference
between mathematical anticipation and physical trans-
formation. Generally, three aspects contribute to this
difference. Firstly, the Fresnel diffraction in free space is
based on paraxial approximation[8]; secondly, the phase
transform function of lens is derived from the assumption
that omitting the primary spherical aberration factor or
the higher one is permissible; finally, the real system is
always an apertured system. Among three factors, which
one is dominant or decisive depends on the specific prob-
lem. The factor that sets the minimum beam width to
the diffraction wave is usually dominant. In most cases,
the condition of omitting the spherical aberration in de-
riving the phase transform function sets the minimum
beam width to fractional Fourier transform of input wave.
It is also a paraxial condition. For paraboloid refracting
system, it has no primary spherical aberration factor[9],
but for thin paraboloid refracting system, it also demands
the paraxial condition. With this in mind, we take this
limitation as a virtual aperture. The paraxial approxi-
mation of Fresnel diffraction in free space is further taken
into account, the virtual aperture on the paraboloid re-
fracting surface can be mapped to the virtual aperture on
the input plane, so fractional Fourier transform integral
is confined to this virtual aperture.

The fractional Fourier transform implemented by aper-
tured systems has been extensively studied[10−14], but
the apertured paraboloid refracting system is the sim-
plest and the most basic system for performing frac-
tional Fourier transform. By cascading two or more
different apertured paraboloid refracting systems, the
complicated, practical, and precise fractional Fourier
transform systems can be constructed. Thus, investigat-
ing the apertured paraboloid refracting system is mean-
ingful and significant.

Figure 1 is a paraboloid refracting system which is ca-
pable of implementing fractional Fourier transform of
pth order when z1 = nF1 sin ϕ

1−cos ϕ , z2 = n0F1 sin ϕ
1−cos ϕ , and

r = (n0−n)F1
sin ϕ , where ϕ = pπ

2 . The focal distance of

thin refracting lens located between plane P1 and plane
P2 is f ′ = n0F1

sin ϕ . Here “thin” means that the thickness
between plane P1 and plane P2 is much less than the ra-
dius r at the vertex of paraboloid refracting surface. This
assumption, in turn, requires that the beam width s1s4

of incident wave on the thin refracting lens is limited.
Taking this limitation as a virtual aperture with radius
b, the aperture function A(x1) is

A(x1) =
{

0 |x1| > b
1 |x1| ≤ b

. (1)

To the thin paraboloid refracting lens, the phase trans-
form function is[9]

t(x1) = exp[−jk(n0 − n)
x2

1

2r
], (2)

where the constant phase factor has been omitted. So

u′(x1) = A(x1)t(x1)u(x1). (3)

We can expand the aperture function A(x1) into a
finite sum of complex Gaussian functions[13−15]

A(x1) =
M∑

m=1

Am exp(−Bm

b2
x2

1), (4)

where Am and Bm denote the expansion and the Gaus-
sian coefficients, respectively, which could be obtained
by optimization computation directly. Table 1 lists a set
of this two coefficients when m varies from 1 to 10, Am

Fig. 1. Fractional Fourier transform system constructed with
a single paraboloid refracting surface. The input function is
an apertured Gaussian beam with a waist at input plane.
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Table 1. Expansion Coefficients of
Hard-Edged Aperture

m Am Bm

1 11.428 + 0.95175j 4.0697 + 0.22726j

2 0.06002 − 0.08013j 1.1531 − 20.933j

3 −4.2743 − 8.5562j 4.4608 + 5.1268j

4 1.6576 + 2.7015j 4.3521 + 14.997j

5 −5.0418 + 3.2488j 4.5443 + 10.003j

6 1.1227 − 0.68854j 3.8478 + 20.078j

7 −1.01016 − 0.26955j 2.5280 − 10.310j

8 −2.5974 + 3.2202j 3.3197 − 4.8008j

9 −0.14840 − 0.31193j 1.9002 − 15.820j

10 −0.20850 − 0.23851j 2.6340 + 25.009j

and Bm are both complex constants.
Let Am = Rm + Tmj, Bm = Lm + Omj, it is conve-

nient for following development of integral. Then aper-
ture function can be written as

A(x1) =
10∑

m=1

(Rm + Tmj) exp(−Lm + Omj

b2
x2

1). (5)

Figure 2 is the real part and imaginary part of this
aperture function. Figure 3 is the amplitude and phase
of this Gaussian expansion. In Figs. 2 and 3, the radius
of this aperture b = 10 mm. From the figure, we can
see that the expansion formula is only the approximate
simulation of the real aperture. Usually, the higher the

Fig. 2. Real and imaginary parts of complex Gaussian expan-
sion, M = 10, b = 10 mm.

Fig. 3. Amplitude and phase of complex Gaussian expansion,
M = 10, b = 10 mm.

M is, the more precise the simulation is.
The relations among u(x0), u(x1), u′(x1), and u(x) as

illustrated in Fig. 1 are

u(x1) =
exp(jknz1)

j λ
nz1

∞∫
−∞

u(x0) exp{j kn

2z1
[(x1 − x0)2]}dx0,

(6)

u(x) =
exp(jkn0z2)

j λ
n0

z2

∞∫
−∞

u′(x1) exp{j kn0

2z2
[(x − x1)2]}dx1,

(7)

where the integral limits are all infinite as in the integral
of mathematical definition of fractional Fourier trans-
form. However, as discussed above, the thin lens is only
effective within a laterally finite range.

To the Gaussian beam, two virtual apertures have
different diameters which are related with location of
beam waist and diverging angle. As shown in Fig. 1, let
the waist of Gaussian beam at input plane, the complex
amplitude distribution at P1 plane can be written as

u(x1) = u0
ω0

ω(z1)
exp[− x2

1

ω2(z1)
] exp[−j

kn0x
2
1

2h(z1)
], (8)

where
h(z1) = n0(z1 +

π2ω4
0

z1λ2
), (9)

ω(z1) =

√
ω2

0 + (
λz1

πω0
)2, (10)

λ is the wavelength of the Gaussian beam, ω0 is the waist
width. Inserting Eqs. (2), (5), and (8) into Eqs. (3), we
can obtain

u′(x1) = u0
ω0

ω(z1)
exp[− x2

1

ω2(z1)
] exp[−j

kx2
1

2h(z1)
]

×
M∑

m=1

(Rm + Tmj) exp(−Lm + Omj

b2
x2

1) exp(−j
kn0

2f ′ x2
1),

(11)

where f ′ = n0r
n0−n . Further, by inserting Eq. (11) into Eq.

(7), we get

u(x) = u0
ω0

ω(z1)
exp(jkn0z2)

j λ
n0

z2

M∑
m=1

(Rm + Tmj)

×
∞∫

−∞
exp[− x2

1

ω2(z1)
] exp[−j

kx2
1

2h(z1)
] exp(−j

kn0

2f ′ x2
1)

× exp(−Lm + Omj

b2
x2

1) exp[j
kn0

2z2
(x − x1)2]dx1. (12)

Using following integral formula
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∞∫
−∞

exp(−l2x2
1 − qx1)dx1 = exp(

q2

4l2
)
√

π

l
[Rel2 > 0],

(13)
we obtain

u(x) = u0
ω0

ω(z1)
exp(jkn0z2)

j λ
n0

z2

M∑
m=1

(Rm + Tmj)

× exp(j
kn0

2z2
x2) exp[

−(kn0x
z2

)2

Um + Vmj
]

×
√

π

Sm�
2(
√

S2
m+Q2

m−Qm)
+

√√
S2

m+Q2
m

2 − Qm

2 j

, (14)

where

Um =
4Lm

b2
+

4
ω2(z1)

, (15)

Vm =
4Om

b2
+ 2kn0[

1
f ′ +

1
h(z1)

− 1
z2

], (16)

Sm =
Om

b2
+ kn0[

1
2f ′ +

1
2h(z1)

− 1
2z2

], (17)

Qm =
Lm

b2
+

1
ω2(z1)

. (18)

For numerical simulation of fractional Fourier trans-
form of Gaussian beam in hard-apertured paraboloid

Fig. 4. Distortion process of amplitude distribution of
fractional Fourier transform of Gaussian beam when the
paraboloid refracting system is apertured.

refracting system, the order of fractional Fourier trans-
form is p = 0.6, ϕ = 0.3π, F1 = 200 mm, n = 1, n0 = 1.4,
r = 98.88 mm, z1 = 392.72 mm, z2 = 549.81 mm,
f ′ = 346.11 mm, the waist width of Gaussian beam at the
input plane is ω0 = 10 mm, the beam width at the aper-
ture plane ω(z1) ∼= 10 mm, h(z1) = 8.786e + 8 mm. Fig-
ure 4 is the amplitude distribution of fractional Fourier
transform of Gaussian beam when the aperture size of the
paraboloid refracting system is decreased from much big-
ger than the beam width at the aperture plane to much
less than the beam width. It should be noted that the
amplitude distribution of fractional Fourier transform of
Gaussian beam in a circular hard-apertured system vi-
brates around two points corresponding to two edges of
aperture along x1 axis. When the aperture size tends
to small one, the vibrations extends to the center of
the transformed Gaussian beam and correspondingly the
beam profile is distorted more seriously. This perfor-
mance may be originated from aperture edge diffraction
and approximation simulation of aperture complex Gaus-
sian expansion. As shown in Figs. 2 and 3, the real part
and amplitude of complex Gaussian expansion also vi-
brate at aperture edges. It is anticipated that, with the
increase of expansion series terms and coefficients preci-
sion, the edge-effect will decrease.

In conclusion, by expanding aperture function as the
sum of finite complex Gaussian terms, the more prac-
tical and precise fractional Fourier transform made by
the apertured paraboloid refracting system is analytically
and numerically studied. The result could be useful in
configuring the more complicated and precise fractional
Fourier transform systems.
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